
White Paper

Agilent Technologies

Electronics Manufacturing

Automated Test Group

How To Get The Most From Agilent
Intelligent Yield Enhancement Test
(IYET)

Last Modified: 6/21/2005

Version 1.0

Introduction
This paper describes how to get 3070WN platforms from
the most from Agilent testmains found in the zip

Go to the target board directory.
Technologies' new Intelligent package in the electronic version

Examine the “testorder” file and Yield Enhancement Test (IYET) of this paper. These testmains are
change the line:for Agilent board test systems. based on the 3070 05.30p

generate testplan offstandard testmains for single and IYET is a dynamic re-test strategy
panelized boards. With minor that automatically re-tests failing to
edits, they can be used with older unpowered tests after cycling

generate testplan onsoftware revisions. IYET can be vacuum. Since only failing
also be added to most existing unpowered tests are re-tested if present and re-save. From BT-
testplans. Finally, IYET will be (not all unpowered tests), IYET Basic in the target board
part of the standard testmains can yield the following benefits: directory, execute the command:
for the i5000 platform and the

Testplan generation" 3070PC beginning with the next Higher throughput - Fewer tests
major software release.are executed during each re-test A new “testplan” will be written

sequence. using the testmain found in
“ipg/testmain”. You can now

" Fewer false calls - Passing tests begin your normal testplan debug
are not re-tested, so they have process.
less of a chance to falsely fail.

The IYET testmains can also be This procedure assumes that you
" copied to your have completed the typical test Fewer escapes - Re-tested bad

“/Agilent3070/standard” or development process in the target boards are failed correctly with
“/hp3070/standard” directories board directory but have not yet fewer tests, so they have less of a
and named “testmain” and begun debug. A new testplan will chance to escape.
“testmain_panel”, respectively. be created based on one of the

IYET is implemented entirely in This will cause the testplan IYET testmains.
the testplan using BT-Basic. No writer to create IYET testmains

Download the testmains.zip filesoftware update is required. No for all board directories
and unzip the IYET testmains.tests need to be recompiled. No developed on that system. Be

external programs are called. aware, however, that these files
will get overwritten during a The IYET testplan executes the
software update.unpowered tests just like a

standard testplan. When an
unpowered test fails, however, A directory called “testmains”
the IYET testplan dumps the will be created with the following
report buffer to a file, parses it files:
for failing tests, cycles vacuum,
and re-tests only the failures. File " 3070ux/testmain
I/O is done during vacuum cycle

"for maximum throughput. All 3070ux/testmain_panel
other features of a standard

" 3070pc/testmaintestplan (datalogging, panelized
boards, multiple board versions,

" 3070pc/testmain_panelserialization, ART, etc.) are
retained. Copy the appropriate testmain to

the board directory under the IYET captures re-test failure data
“ipg” directory. If you use FTP to and displays re-test history for
copy the “ux” testmains to a corrective action. Over time, this
3070UX system, make sure to use can result in better fixture and
the “ascii” transfer method. For tester performance by examining
panelized boards, re-name the re-test history, false calls due to
file “ipg/testmain_panel” to most fixture contact problems or
“ipg/testmain”. poorly debugged tests can be

identified and corrected before
they impact yield.

New IYET-enabled testplans can
be created for the 3070UX and

Creating a new IYET Testplan

testmains.zip

2

The newly created testplan
contains additional flags in the
subroutine
“Set_Custom_Options” that are
used to control IYET. By default,
IYET is turned off, so that you
can do nothing and debug the
IYET testplan just like you would
a standard testplan.

Edit “Set_Custom_Options”

To begin using the IYET, find the
subroutine
“Set_Custom_Options”.

A screenshot is shown in Figure
1 with the IYET features in the
yellow box.

Set the “Using_IYET” flag to
“True”. IYET has other usage
flags and parameters. They are
summarized in Table 1 and can
be modified as desired. Other
testplan usage flags and
parameters are unchanged and
can be edited as desired. The
exception is “Chek_Point_Mode”
which is described in the section
“IYET SUBROUTINE
DESCRIPTIONS”.

Getting started with an IYET Testplan

Figure 1 BT-Basic screenshot of IYET usage flags and parameters

3

Other Editing

IYET assumes that the fixture
can be correctly actuated using
the “faon” and “faoff” commands
with a 1.5 second delay for each.
If not, see the section “IYET
SUBROUTINE DESCRIPTIONS”
for details on the subroutines,
“IYET_Vacuum_On” and
“IYET_Vacuum_Off”.

IYET executes re-tested tests
individually. Be sure that the
tests in each test subroutine will
pass “on their own”. Watch out
for gprelay connections,
variables, additional
“unpowered” statements, or
other setups that are in the
testplan but not in the test
source.

Table 1 Description of IYET usage flags and parameters

IYET Usage flag/parameter Description

Using_IYET

IYET_Report_On

IYET_Preshorts_Attempts

IYET_Shorts_Attempts

IYET_Analog_Tests_Attempts

IYET_TestJet_Attempts

As described above. Turns on IYET for the testplan.

Displays the top 10 re-tests for the current day's production. Data

comes from the re-test log file named “retest<date>.txt” in the “iyet'

directory in the board directory. This directory is created if not present.

Controls the number of re-test attempts for failing tests in the

“Preshorts” subroutine of the testplan. Must be an integer >= 1.

Setting equal to 1 will cause the “Preshorts” subroutine to be executed

only once, regardless of failures, effectively turning off IYET for this

subroutine

Controls the number of re-test attempts for failing tests in the “Shorts”

subroutine of the testplan. Must be an integer >= 1. Setting equal to 1

will cause the “Shorts” subroutine to be executed only once, regardless

of failures, effectively turning off IYET for this subroutine.

Controls the number of re-test attempts for failing tests in the

“Analog_Tests” subroutine of the testplan. Must be an integer >= 1.

Setting equal to 1 will cause the “Analog_Tests” subroutine to be

executed only once, regardless of failures, effectively turning off IYET

for this subroutine.

Controls the number of re-test attempts for failing tests in the “TestJet”

subroutine of the testplan. Must be an integer >= 1. Setting equal to 1

will cause the “TestJet” subroutine to be executed only once,

regardless of failures, effectively turning off IYET for this subroutine.

4

Running the IYET Testplan the

First Time

Once enabled, the IYET testplan
will differ slightly from the
standard testplan flow. First, the
startup message will indicate
that IYET is enabled. Figure 2
shows the new startup message.

Figure 2 BT-Basic screenshot of IYET Startup message

Note the new line for the IYET
message highlighted in yellow. If
the flag “IYET_Report_On” is
false, then the string, “-Report”
will be missing.

The testplan creates a directory
called “iyet” in the local board
directory if one is not present.
The temporary failure ticket and
re-test log files are kept there. If
the “iyet” directory is created
(for example, this is the first time
the testplan is run), then an
unstable test report will not be
generated, even if the flag
“IYET_Report_On” is true.

5

Figure 3 BT-Basic screenshot of IYET test flow

Figure 3 shows the BT-Basic If the flag “IYET_Report_On” is
window during the normal true and the “iyet” directory
execution of the testplan. Note exists, then an “IYET - Unstable
that when an unpowered test Tests Report” is displayed during
subroutine fails, vacuum is initializations each time the
released. During this “dead” time, testplan is run. Figure 4 shows a
the failure ticket is parsed and a screenshot.
list of failing tests are created.
After an operator prompt,
vacuum is turned on and the
failures are re-tested. Do not
comment this prompt unless your
fixture is approved for actuation
without operator intervention.
See the section “IYET
SUBROUTINE DESCRIPTIONS”
for details.

6

Figure 4 BT-Basic screenshot of IYET Unstable Test Report

The “IYET Unstable Tests Report” with the total number of retests For pay-per-use systems, this
comes from a file listed in the for that test that day. This report may take several minutes
title, in this case display should be used to take to generate. If this is
“./iyet/retest050114.txt”. Files corrective action on the fixture objectionable, set
are named “retest<date>.txt”. (replace the probes associated “IYET_Report_On” to false and
This file is appended with each with the test, for example) or test review the re-test log files
failure ticket for the current date. program (add the “ed” option for manually.
If there are no retests or there is a noisy test, for example).
no file for the current date, then

Over time, the “iyet” directory
this screen displays the message,

will fill up with these re-test log
“No retests found or missing file”.

files. The user can view, copy and
The file is parsed and the top 10 delete them as needed.
unstable tests are listed along

7

IYET Testplan Description
This section provides a detailed " Subroutines - Name begins with
description of the IYET testplans. “IYET”.
It is intended for those familiar

"with BT-Basic who need Global variables - Contain the
information to add IYET to string “IYET”.
existing testplans.

" Calls to these subroutines,
3070 testplans consist of two

supporting dimension
parts, the testmain and test

statements, and global
subroutines. The testplan writer

statements are interspersed in
copies the testmain into the

the testmain and labeled with the
target board directory and

comment “! IYET”.
appends the test subroutines.

Figure 5 is a simplified map of a The IYET testmain is a lightly
single board IYET testplan. The edited standard testmain with 7
text in highlights the subroutines (8 for panelized

boards) appended. The naming locations of additional code
convention for the additional added to a standard testmain to
IYET code is as follows: support IYET.

blue

Figure 5 IYET Testplan Map

Dimension statements

Test_Sections,

Initializations, Print_Startup_Message,

Set_Custom_Options,

IYET Subroutines

Wait for start loop

Error and Break traps

Subroutines
 Reset_Board, Chek_Point_OK, Start_Logging,

Get_Serial_Num$, Verify_Board_Names,
IllegalChars_In_Board_Name, Create_Log_Queue, Setup_Logging,

 Get_Board_Revision,
Do_Version_Inits, Get_Version_Label, Initialize_Constants,

 Cleanup_Flash, Set_Log_Level

Testmain

Test Subroutines

Characterize, Preshorts, Shorts, Analog_Tests, TestJet, Connect_Check,
Polarity_Check…

8

Each of the items in figure 5 is described in detail below:

" Dimension Statements

IYET requires three arrays to process failure tickets and report re-test history. They are 40 characters
wide since that is the limit of the report printer. They are dimensioned at the top of the testplan as
follows:

! IYET
dim IYET_Failing_Tests$(0:2047)[40]
dim IYET_Retest_Failing_Devices$(0:8191)[40]
dim IYET_Top_Retests$(0:8191,2)[40]

" Sub Initializations

IYET is initialized at the end of this subroutine. A global statement is also required.

! IYET
global Using_IYET
…
! IYET
if Using_IYET then call IYET_Initialize
Subend

" Sub Print_Startup_Message

The following code is used to print the IYET startup message at the end of this subroutine. A global
statement is also required.

! IYET
global Using_IYET, IYET_Report_On
…
! IYET
O3$=" "
if Using_IYET then
 O3$=O3$&" Intelligent Yield Enhancement Test"
 if IYET_Report_On then O3$=O3$&"-Report"
end if
print O3$
print using "2/"
Subend

" Sub Test_Sections (Single Board)

IYET works on test subroutines called from the “Test_Sections” subroutine. Note that the flag
“Using_IYET” is used to direct calls the core IYET subroutine for the unpowered test subroutines
“Preshorts”, “Shorts”, “Analog_Tests” and “TestJet”. If the flag is not set, this subroutine behaves like a
standard testplan.

blue

9

The “Analog_Tests” call also includes checks to make sure that IYET is not used during learning or
sampling. This ensures that re-test data does not corrupt datalogging.

! IYET
global Using_IYET, Sampling, IYET_Preshorts_Attempts
global IYET_Shorts_Attempts, IYET_Analog_Tests_Attempts, IYET_TestJet_Attempts

if Using_IYET then
 call IYET (PreshortsMsg$, IYET_Preshorts_Attempts)
else
 call Pre_Shorts (Failed_In_Preshorts, Mode$ & PreshortsMsg$)
end if
if boardfailed then subexit

if Using_IYET then
 call IYET (ShortsMsg$, IYET_Shorts_Attempts)
else
 call Shorts (Failed_In_Shorts, Mode$ & ShortsMsg$)
end if
if boardfailed then subexit

if Logging or not learning then
 if Using_IYET and not learning and not Sampling then
 call IYET (AnalogMsg$, IYET_Analog_Tests_Attempts)
 else
 call Analog_Tests (Failed_In_Analog, Mode$ & AnalogMsg$)
 end if
 if boardfailed then subexit
end if

if Using_IYET then
 call IYET (TestJetMsg$, IYET_TestJet_Attempts)
else
 call TestJet (Failed_In_TestJet, Mode$ & TestJetMsg$)
end if
if boardfailed then subexit

" Sub Test_Sections (Panelized Board)

IYET works on test subroutines called from the “Test_Sections” subroutine. Note that the flag
“Using_IYET” is used to direct calls the core IYET subroutine for the unpowered test subroutines
“Preshorts”, “Shorts”, “Analog_Tests” and “TestJet”. If the flag is not set, this subroutine behaves
like a standard testplan.

The “Analog_Tests” call also includes checks to make sure that IYET is not used during learning or
sampling. This ensures that re-test data does not corrupt datalogging.

! IYET
global Using_IYET, Sampling, IYET_Preshorts_Attempts
global IYET_Shorts_Attempts, IYET_Analog_Tests_Attempts, IYET_TestJet_Attempts

if Using_IYET then
 call IYET (PreshortsMsg$, IYET_Preshorts_Attempts)
else
 call Pre_Shorts (Failed_In_Preshorts, Mode$ & PreshortsMsg$)
end if
if All_Failed then subexit

if Using_IYET then
 call IYET (ShortsMsg$, IYET_Shorts_Attempts)

10

Else
 call Shorts (Failed_In_Shorts, Mode$ & ShortsMsg$)
end if
if All_Failed then subexit

if Logging or not learning then
 if Using_IYET and not learning and not Sampling then
 call IYET (AnalogMsg$, IYET_Analog_Tests_Attempts)
 else
 call Analog_Tests (Failed_In_Analog, Mode$ & AnalogMsg$)
 end if
 if All_Failed then subexit
end if

if Using_IYET then
 call IYET (TestJetMsg$, IYET_TestJet_Attempts)
else
 call TestJet (Failed_In_TestJet, Mode$ & TestJetMsg$)
end if
if All_Failed then subexit

" Sub Update_Status (Panelized Board)

For panelized boards using IYET, the subroutine “Update_Status”, must be bypassed during the re-test
sequence and re-executed at the end of the re-test sequence. This is accomplished by the following
code:

! IYET
global IYET_Skip_Update_Status

if IYET_Skip_Update_Status then subexit

11

IYET Subroutine Descriptions
This is a high-level description IYET subroutines. In most cases, you will not need to modify these
subroutines. They are described here for reference.

" Sub IYET_Initialize

This subroutine is called at the start of the testplan to initialize the paths, files, constants and messages
used by IYET. It is called each time the testplan is run.

A directory called “iyet” is created in the board directory if it is not present. This directory will be used to
store two files; the current failure ticket (“failure.txt”) and a re-test log file (“retest<today's date>.txt”). The
re-test log file includes the day's date in its name. The current failure ticket is appended to this file for
each re-test sequence. Thus, the re-test log file tracks all failure tickets for a given day. Over time, this
directory will fill up with re-test log f iles. The user can view, copy and delete these files as required.

If the flag “IYET_Report_On” is on, then the subroutine “IYET_Create_Report” is called (see below).

IYET will cycle the vacuum between retests. The delay for vacuum release and actuate are controlled by 2
parameters, “IYET_Vacuum_Off_Delay” and “IYET_Vacuum_On_Delay”. These are set to 1.5 seconds and
can be adjusted.

IYET will alter the behavior of Chek-Point (the “pins” test). If the testplan flag “Chek_Point_Mode” is set
to “Failures”, then IYET will set the “Max_Times_To_Fix_Contact” to 1. Since vacuum is cycled by IYET on
failure, this prevents additional vacuum cycles when the “pins” test is run. Chek-Point is unchanged if the
“Chek_Point_Mode” is “Off” or “Pretest”.

" Sub IYET_Create_Report

If the flag “IYET_Report_On” is on, then this subroutine is called at the start of the testplan and displays
the top 10 re-tested tests from the current re-test log f ile. The number of tests displayed is controlled by
the “IYET_Max_Report_Count” parameter and can be adjusted. If there are no re-tests or the file does not
exist, then a warning message will be displayed.

The re-test log file is named with the current day. Thus, only the re-test history for the current day is
displayed. If there are no re-tests or the file does not exist, then a warning message will be displayed.

" Sub IYET_Vacuum_Off, IYET_Vacuum_On

These control vacuum actuation during the IYET re-test sequence. These routines assume that vacuum for
the fixture is controlled using the “faon” and “faoff” commands. If you are using the other vacuum
commands (“fbon/fboff”, “auxconnects/disconnects”, custom press or board handler commands, etc.) edit
this subroutine to match your fixture set up. If you do edit these routines, be aware that IYET processes
the re-test failure data during the delay for vacuum release. In the “IYET_Vacuum_Off” subroutine, the
parameter “IYET_Start_Vacuum_Off” is set to the current “msec” count. This is in turn passed to the
“IYET_Vacuum_On” subroutine and used to enforce the “IYET_Vacuum_Off_Delay”.

The “IYET_Vacuum_On” subroutine will prompt the operator prior to actuating the vacuum during the re-
test sequence using the following line of code:

question IYET_Cont_Msg$,Continue | if not Continue then stop

Do not comment this line unless your fixture is approved for actuation without operator intervention.

" Sub IYET (TestType$, Maximum_Number_Attempts)

This is the core subroutine for IYET. If the flag “Using_IYET” is set, it is called from the testplan
subroutine “Test_Sections” in place of the normal calls to “Preshorts”, “Shorts”, “Analog_Tests”, and
“TestJet”. The “Analog_Tests” call also includes checks to make sure that IYET is not used during learning
or sampling. This ensures that re-test data does not corrupt datalogging.

This subroutine does the following:

"Checks that “Maximum_Number_Attempts” is greater than or equal to 1 and rounds to the nearest
integer. The variable “Retests_Remaining” is now set to “Maximum_Number_Attempts”.

" Turns off logging. It is restored to the correct level prior to the last re-test sequence by calling the
subroutine, “Cleanup_Flash”.

" Forces buffered reporting during the re-test sequence. If it is off to begin with, at the end of
12

subroutine the report buffer(s) is(are) dumped and buffered reporting is turned back off.

" If this is a panelized board, the “IYET_Skip_Update_Status” flag is set. This causes the panelized
testplan subroutine, “Update_Status” to exit without processing the “Board_Set(*)” array during
the re-test sequence.

"The test subroutine (“Preshorts”, “Shorts”, “ Analog_Tests”, “TestJet”) is called for the first time
based on the string, “TestType$”.

" The variable, “Retests_Remaining” is decremented.

" The re-test loop is now entered. It does the following:

"Exits if the initial test subroutine passes.

"Exits if “Retests_Remaining” = 0.

"Turns off vacuum, calls “IYET_Get_Failed_Tests”, turns on vacuum.

"Exits if “IYET_Get_Failed_Tests” returns an “Abort” flag.

"If “Retests_Remaining” = 1, restores logging by calling “Cleanup_Flash”.

"Calls “IYET_Retest_Failed_Tests”. This re-tests all the failed tests.

"Decrements “Retests_Remaining”.

" After the re-test loop, some cleanup is done prior to exiting the subroutine. Some cleanup
activities could be redundant:

"Restore logging by calling “Cleanup_Flash”.

" If buffered reporting was initially off, dump the report buffer(s) and turn off buffered
reporting.

"For panelized boards, clear the “IYET_Skip_Update_Status” flag and call “Update_Status”.

IYET executes re-tested tests individually. Be sure that the tests in each test subroutine will pass “on their
own”. Watch out for gprelay connections, variables, additional “unpowered” statements, or other
setups that are not in the test source.

"Sub IYET_Get_Failed_Tests (IYET_Abort)

This subroutine does the following:

" Saves the failure ticket to a failure file and appends it to the re-test log file.

" Parses the failure file to get a list of failing tests in the array, “IYET_Failing_Tests$(*)”

" If there are no failing tests or capacitance compensation needs to be learned, then the
“IYET_Abort” flag is set.

" If the “IYET_Abort” is not set, then the report buffer(s) and failure flag(s) are cleared.

"Sub IYET_Retest_Failed_Tests

This subroutine tests all the tests in the array “IYET_Failing_Tests$(*)”. For panelized boards, the “board
number is” flag is set.

13

For more information about Agilent Technologies
products, solutions, applications or services in
electronics manufacturing, visit our website:

You can also contact one of the following
centers and ask for a test and measurement
sales representative.

United States:
(tel) 1 800 447 8378

Canada:
(tel) 1 800 447 8378
(fax) 1 905 282 6300

Europe:
(Tel)
(Fax)

Latin America:
(tel) 011 52 (333) 134 5854
(fax) 011 52 (333) 134 5851

Asia Pacific:
(tel) (65) 6215 8383
(fax) (65) 6822 8636

Data subject to change without notice.

© Agilent Technologies, Inc. 2005
Printed in the U.S.A.
July 15, 2005
5989-3498EN

www.agilent.com/see/pcb

+49 69 9530 7917
+49 7031 464 8219

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

